Kapitel 16: Instationäre Temperatur-Analyse mit MEANS V12

Was ist eine Instationäre Temperaturverteilung

Unter instationärer Wärmeleitung wird die Erwärmung und Kühlung von festen Körpern verstanden, die Temperatur ist also abhängig von der Zeit.

Materialdaten für die instationäre Temperatur:

Dichte ρ

Die Dichte ρ ist der Quotient aus Masse und Volumen: ρ =mV. Wichtige Dichten sind: Aluminium = 2700 kg/m³, Stahl = 7800 kg/m³, Luft = 1.204 kg/m³, Wasser = 997 kg/m³, Eis = 920 kg/m³ (Eis ist immer leichter als Wasser)

Wämeleitfähigkeit λ

Unter Wärmeleitung versteht man den Transport von Wärme in einem Medium ohne Stofftransport (wie beispielsweise bei der Konvektion). Wichtige Wärmeleitfähigkeiten sind Aluminium = 220 W/(mK), Stahl = 40 W/(mK), Luft = 0.0181 W/(mK), Wasser = 0.6 W/(mK), Eis = 2.13 W/(mK)

Spezifische Wärmekapazität C

Die spezifische Wärmekapazität - welche in Formeln als "C" bezeichnet wird - ist eine Stoffkonstante. Sie gibt an, wie viel Wärme von einem Körper aufgenommen oder abgegeben werden muss, damit sich die Temperatur von 1kg des Stoffes um 1°C ändert. Wichtige spez. Wärmekapazitäten sind Aluminium = 895 J/(kg·K), Stahl = 540 J/(kg·K), Luft = 1010 J/(kg·K), Wasser = 4190 J/(kg·K), Eis = 2060 J/(kg·K)

Gesamtzeit, Zeitschritt und Starttemperatur

Weiterhin ist die Eingabe der Gesamtzeit in Sekunden sowie der Zeitschritt und die Starttemperatur in °C erforderlich.

Beispiel 1: Abkühlung eines Zylinders

Es wird eine Kühlung eines zylindrischen Körpers betrachtet, im Inneren des Volumens beträgt die Anfangstemperatur = 60 °C und an den Außenflächen ist die ständige Außentemperatur = 0 °C. Die Abkühlzeit beträgt 20 Sekunden.

Kreisbogen im Linien-Modus erzeugen

das Prgramm "MEANS V12 für Starten Sie über das Desktop-Icon DirectX11" und rufen mit der Registerkarte "Ansicht" und dem Dropdownmenü "Linien-Modus" ein neues Seitenmenü auf der rechen Bildschirmseite auf.

O Rendering O Drahtgitter Schattierung: 10% - O mit Netz mit Kanten - Hidden-Line neu View View View Preview Zoom 1. Gesamtansicht - Surfaces Nodes Infozeile Infozeile	💛 Datei	Ansicht	Netzgenerierung	FEM-Projekt b	earbeiten f	FEM-Analyse	Ergebnisaus	wertung	Training			
View Preview Zoom Surfaces Nodes 1. Flächen-Modus Infozeile 2. Knoten-Modus Juier-Modus 4. Flächen-Modus Juier-Modus 4. Flächen-Modus	Rendering	O Drahtgitter	Schattierung: 1	0% -	3D 🤇	1. Gesa	amtansicht 🔹 👻			2.	Knoten-Modus	Hintergrun
2. Knoten-Modus 3. Linien-Modus 4. Flächenmodell erzeuger	O mit Netz	mit Kanten	Tidden-Line ne	u View	Preview Zo	om Infozeile		Surfaces	Nodes	1.	Flächen-Modus	
4. Flächenmodell erzeuger										2.	Knoten-Modus	
										5. 4.	Flächenmodell erze	ugen
5. Flächen ein- und ausble										5.	Flächen ein- und au	usblenden

Wählen Sie hier das Menü "Kreisbogen erzeugen" um einen halben Kreisbogen mit dem Radius = 50 mm von 270 Grad - 90 Grad zu erzeugen:

Neu	REDO	100 March 1
Aktuelle Elementg	ruppe: 1	
X-Koordinate:	0.00	
Y-Koordinate:	0.00	
Z-Koordinate:	0.00	
Aussen-Radius:	50	
Innen-Radius:	0	
Rasterung:	36	
Anfangswinkel:	270	
Endwinkel:	90	
Krei	sbogen erzeugen	

Dannach wählen Sie "Linie erzeugen" um die Knoten 37 und 1 mit einer Linie zu verbinden. Wählen Sie Menü "2D Netzgenerator" um ein 2D-Netz zu generieren.

				~	
Punkt					
X-Koordinate:	5.96244E-07				
Y-Koordinate:	50				
Z-Koordinate:	0				100 C
O Punkt 37					
X-Koordinate:	4.357793				
Y-Koordinate:	49.80973				
Z-Koordinate:	0 gezeigte Knote	en verbinde	en		
Z-Koordinate:	0 jezeigte Knote nie: 2 nie erzeugen	en verbinde	en 1		
Z-Koordinate:	0 gezeigte Knote nie: 2 nie erzeugen	en verbinde	en		
Z-Koordinate: [O oder mit allen ang Anzahl Knoten pro Lir Lir Vnzahl Elementgruppen:	0 jezeigte Knote nie: 2 nie erzeugen	en verbinde	en		
Z-Koordinate: [O oder mit allen ang Anzahl Knoten pro Li Lir vnzahl Elementgruppen: Anzahl Knoten:	0 gezeigte Knote nie: 2 nie erzeugen 1 37	en verbinde	en		
Z-Koordinate: [O oder mit allen ang Anzahl Knoten pro Lir Lir vnzahl Elementgruppen: Anzahl Knoten: Anzahl Elemente:	0 jezeigte Knote nie: 2 nie erzeugen 1 37 37	en verbinde	en		
Z-Koordinate: [O oder mit allen ang Anzahl Knoten pro Lii Lii Anzahl Elementgruppen: Anzahl Elemente: Jement löschen:	0 pezeigte Knote nie: 2 nie erzeugen 1 37 37	еп verbinde	en		

das in der Mitte ein zu grobes Netz hat und nachverfeinert werden muß.

	🖷 – 🗆 🗙
	Flächen Knoten Linien
	Knoten: 1579 Neu
🛃 2D-Netzgenerator — 🗆 X	X: 14.4307 Y: -46.6744
von Bementgruppe: 1 bis Bementgruppe: 1	Knoten erzeugen
Elementtyp: TERS V	Einzelknoten erzeugen
Netzdichte: 300 V	Rechteck / Kreis
Fangradius: 005	Knoten manipulieren
QUAD-Vierecksnetz erzeugen	Knoten vereinen
3D-Modell extrudieren	Knoten prüfen
Knoten in Z-Richtung = 5	Netzgeneratoren 2D-Netzgenerator
Z-Objekthöhe =	3D-Netzgitter
	EG= 1 ~ Neu
Knoten prüfen Netzverfeinerung	
Caricer neip FEM-NETZE GENERIEREN	UNDO / REDU
	Linien-Modus beenden

Netzverfeinerung

Erzeugen Sie mit Menü "Rechteck/Kreis" folgendes Rechteck mit der EG=2 und

🖷 Rechteck oder Kre — 🗆 🗙 Kreisbogen Rechteck
Neu REDO
Aktuelle Elementgruppe: 2
Rechteck-Startpunkt:
X-Koordinate: 2
Y-Koordinate: -15
Z-Koordinate: 0.00
Breite: 15
Höhe: 30
Rechteck erzeugen
Cancel

wählen dannach im 2D-Netzgenerator das Menü "Netzverfeinerung" um das Netz in diesem Bereich nachzuverfeinern.

	🖶 Refine Mesh						
	No.	Main Group	Subgroup	Refine	Holes		
	1	1	0	0	0		
	2	2	1	1	0		
▶ #							

Dananch generieren Sie in einem Arbeitsgang mit Menü "2D-Netzgenerator" zuerst ein 2D-Netz mit einer anschließenden 3D-Extrudierung mit der Einstellung "3D-Modell extrudieren" sowie einer Netzdichte in Z-Richtung = 30 und einer Z-Objekthöhe = 100.

2D-Netzgenerator	—	×
von Elementgruppe: 1 bis Elementgruppe: 2		
Elementtyp: TRI3S ~		
Netzdichte: 300 V		
Fangradius: .005		
QUAD-Vierecksnetz erzeugen 3D-Modell extrudieren Knoten in Z-Bichtung = 30		
Z-Objekthöhe = 100		
Knoten prüfen Netzverfeinerur	g	
Cancel Help FEM-NETZE GENERIE	REN	

Man erhält ein FEM-Netz aus 67728 PEN6-Volumenelementen und 37380 Knoten.

Eingabe der Außentemperatur

Wählen Sie Register "FEM-Projekt bearbeiten" und das Icon um die ständige Außentemperatur von 0 °C einzugeben.

Netzgenerier	rung FEM-Projel	ct bearbeiten	FEM-Analyse	Ergebnisauswertung	Training		
stung 👻	Randbedingungen	1. Randbed	ingungen 🔹	Elementgruppen	Materialdaten	6. Belastungen	Temperatur
×.			Linien-Modus a	aktiviert			Far

Wählen Sie Menü "Knoten-Temperaturen" und klicken die Außen-Flächen 1, 2 und 4 an. Diese werden in der Select-Box angezeigt, dort mit Menü "Erzeugen" die Randtemperaturen erzeugen.

	🔘 Stationār 💿 Instationār 🔘 Statik
Punktquelle, Lasttyp 2 (W)	Materialdaten
	Material-Datenbank
Flächenquelle, Lasttyp 7 (W/m³)	Konvektions-Datenbank
Konvektion, Lasttyp 8 (W/m ² K)	Internet-Links: Wärmeleitfähinkeit für unter Materialian
Strahlung, Lasttyp 9	Spez. Wärmekapazität für unter. Materialien

und erhält folgende Randbedingungen mit dem Wert= 0 als blaue Punkte dargestellt.

Zum Schluß wird mit und Menü "instationär" die instationäre Temperatur-Analyse mit der Gesamtzeit = 20 Sekunden, der Zeitschrittweite = 0.2 und der Start-Temperatur= 60 °C eingestellt.

Knoten-Temperaturen (°C)	🔿 Stationār 💿 Instationār 🔿 Statik				
Punktquelle, Lasttyp 2 (W)	Materialdaten	🖳 Instationaere Temperatur		(777)	1
Rächenquelle, Lasttyp 7 (W/m²) Konvektion, Lasttyp 8 (W/m²K)	Material-Datenbank Konvektions-Datenbank	Gesamtzeit: Zeitschrittweite:	20.0	(sek)	
Strahlung, Lasttyp 9	Internet-Links: <u>Wämeleitfähigkeit für unter. Materialien</u> Spez. Wämekapazität für unter. Materialien	Starttemperatur:	60.0	(°C)	
		CANCEL	ОК		

Materialdaten

Wählen Sie das Register "FEM-Projekt bearbeiten" und das Icon ^{Temperature} und geben folgende Materialdaten ein:

	Bezeichnung	Materialwerte			
	E-Modul	210000			
	Poisson-Zahl	.3			
	Dichte	7.7E-06			
	Waermekoeffizient	1.2E-05			
	Waermeleitfähigk	.04			
	spez. Wärmekap	460			
	Referenztempera	1.2E-05			
	Wärmestrom	0			
	Dämpfung	0			
Ele	ementgruppe: 1	Elementtyp: PEN	6	<	>

Postprocessing

Nach der FEM-Analyse mit dem Quick-Solver folgt mit dem Icon und Register "Ergebnisauswertung" die Ergebnisauswertung der instationären Temperaturverteilungen für jeden Zeitschritt als 3D-Grafik oder mit einem Diagramm.

			Zeitschritt: 1
) Instat	ionāre Ten	nperatur	
) Wäm	nestromdich	ite	 Auflagerkräfte auswerten
O Elementspannungen ungemittelt			 Knotenkräfte auswerten
1	3	4	Knotenwerte picken, suchen, sichem
ebnis-K	(omponente	e wählen e Temperaturverte	ilung
	in recent of real	o Temperatur Verte	inding to the second se

Zeitschritt 1 mit dem Ausgangszustand und der Start-Temperatur 60 °C

Zeitschritt 9 nach 10 sec mit der max. Temperatur = 58.7 °C (exakt = 59.3 °C)

Zeitschritt 11 nach 20 sec mit der max. Temperatur = 51.3 °C (exakt = 51.1 °C)

Zeitschritt-Temperatur-Diagramm

Die einzelnen Zeitschritte können in einem Diagramm dargestellt werden, wählen Sie Register "Ergebnisauswertung" und "Diagram 2". Dort wählen Sie "Starten" um nach der Auflistung der maximalen Knoten-Temperaturen mit dem Menü "Diagramm darstellen" das Zeitschritt-Temperatur-Diagramm darzustellen.

Zeitschritt	Zeit (sec)	Knoten	Temperatur (°C)
1 2 3 4 5 6 7 8 9 10 11	.2 .4 .7 .1.15 1.82 2.83 4.35 6.63 10.05 15.17 20	1670 35538 31421 161323 179402 175086 18348 18348 18348 18348 18348 18348	80.833 65.3543 60.0176 60 59.9999 59.9983 59.9731 59.7659 58.7435 55.4872 51.2792
 Fertig, die Dia	gramme können nun dar cel Starter	gestellt werden!	Diagramm darstellen

Diagramm editieren

Im aktuellen Projekt-Verzeichnis befinden sich **diagram.dat** und **diagram.plt** die mit einem Texteditor editiert und mit der Anwendung GNUPLOT.EXE im GNUPLOT-Verzeichnis mit Menü "Open" neu eingeladen und geplottet werden können.

Beispiel 2: Abkühlung von Metallkugeln

Das folgende Beispiel stammt aus dem Buch "Praxis der Wärmeübertragung" von Rudi Marek, ISBN 978-3-446-46124-6 und wird mit dem Ergebnis von MEANS V12 verglichen.

In der Kugellagerfabrik von Eddy Eckig sollen Metallkugeln

Wärmeleitfähigkeit λ = 40 W/(m K)

Dichte ρ = 7600 kg/m³

Cp = 474 J / (kg K)

D = 24 mm

von der Anfangstemperatur ϑ_0 = 620 °C in einem Luftstrom mit dem

Wärmeübergangskoeffizienten α = 80 W /(m² K) und der

Umgebungstemperatur ϑ_{K} = 20 °C

auf die Endtemperatur $\vartheta_{\rm E}$ = 50 °C abgekühlt werden.

Berechnen Sie die dafür notwendige Abkühlzeit t

2D-Berechnung

FEM-Modell

Da die Metallkugel eine rotationssymmetrische Kugel ist kann die Berechnung mit den axialsymmetrischen Rotationsscheiben TRIX6 und QUAX8 erheblich vereinfacht werden.

Kreisbogen erzeugen

Starten Sie über das Desktop-Icon das Prgramm "MEANS V12 für DirectX11" und schalten mit der Registerkarte "Ansicht" und dem Dropdownmenü "Linien-Modus" den Linien-Modus ein. Es erscheint auf der rechten Seite ein neues Seitenmenü, wählen Sie hier das Menü "Kreisbogen erzeugen" um einen halben Kreisbogen mit dem Radius = 0.0125 m von 270 Grad - 90 Grad zu erzeugen:

Datei Ansicht	Netzgenerierung FEM-Projekt I	bearbeiten FEM-Analyse	Ergebnisauswertung	Training	
Rendering O Drahtgitte mit Netz mit Kanten	r Schattierung: 10% +	3D Q 1. Gesa	mtansicht 🕞 🚺	2.	Knoten-Modus
	View	Preview Zoom	Surfaces	Nodes 1.	. Flächen-Modus
		intozene		2.	Knoten-Modus
				3	Linien-Modus
				4.	Flächenmodell erzeugen
				5.	Flächen ein- und ausblenden

Dannach wählen Sie "Linie erzeugen" um die Knoten 47 und 1 mit einer Linie zu verbinden. Zum Schluß wählen Sie Menü "2D Netzgenerator" um ein TRIX3-Netz zu generieren.

Create Rectang	le or Ci — 🗆 🗙	Surface Nodes Lines
le Retangle		Node: 47 No
		X: -1.174709E-07
New	REDO	Y: .0125
Actual Element grou	ID: 1	Z: 0
		Create Nodes
Middle-Poir	t	Create Nodes
X direction:	0.00	Create Lines
Y direction:	0.00	Circle / Rectangle
Z direction:	0.00	Manipulate Nodes
Radius:	0.0125	Copy Range of Nodes
Number of Nodes:		Unit Nodes
Number of Nodes.	40	Check Nodes
Start Angel:	270	Mesh Generators
End Angel:	90	2D Mesh Generator
	<u> </u>	3D Mesh Grid
	Create Arc	
		EG= 1 ~ N
	Cancel	Load DXF-Lines
		UNDO / REDU
		Out lies Made
		Quit Line-Wodus

Materialdaten

Wählen Sie das Register "FEM-Projekt bearbeiten" und das Icon Temperature und übernehmen aus der selbst erweiterbaren Materialdatenbank das Material "Stahl" mit der Dichte von 7600 kg/m³, der Wärmeleitfähigkeit von 40 W/mk und der Spezifische Wärmekapazität von 474 J/(kgK).

	Name	Material Datas			
2	Youngs modulus	0			
	Poisson Ratio	0			
	Density	7600			
	WK	0			
	WL	40			
	CV	474			
	RV	0			
	QD	0			
	DAMP	0			
Ele	ement Group: 1	Element TRIX6 Temperate	ur	< :	>

🖳 Material-Datenbar	nk											- 🗆 X
Werkstoff:	Stahl			Dichte (kg/m³):		7600		spez. W	/ärm	ekapazität (J/kgK):	474	+
E-Modul (N/m ²):	210000	000000		Wärmeausdehnungskoet	fizient:	0.00001		7				
Poisson-Zahl:	0.3			Wärmeleitfähigkeit (W/m	к):	40		Sortie	eren	nach: Alphabetisch	ß	~
Add Delete	Save	Material übernehmen		Datenbank einladen		Datenbank siche	rn	Meter		O Millimeter		Beenden
Werkstoff		E-Modul		Poisson-Zahl		Dichte	Wām	ekoeffizient		Wärmeleitfähigkeit		spez. Wärmekapazität
Keramik Kunker Konstantan Kupfer Luhium Luranyl Magnesium Mamor Messing Neusilber Nickel PBT Utradur B416 PBT Utradur B4406 PBT Utradur B4406 Sibler Potzellan Sibler Sibler Sibler Sibler Sibler Variadium Vulkanfiber Vulkanfiber Vulkanfiber Vulkanfiber Vulkanfiber Vulkanfiber Vulkanfiber Vulkanfiber	A .	16000000000 2700000000 1230000000 4310000000 250000000 250000000 10000000 2500000000 100000000 2500000000 300000000 300000000 300000000 3000000	*	.3 .3 .3 .3 .35 .0.23 .28 .3 .3 .35 .37 .34 .30 .35 .37 .34 .39 .35 .37 .34 .39 .35 .37 .34 .32 .35 .33 .35 .39 .35 .31 .32 .32 .33 .33 .35 .33 .35 .33 .35 .33 .35 .33 .35 .33 .35 .34 .35 .35 .35 .37 .36 .37 .37 .38 .37 .39 .35 .31 .36 .33 .36 .34 .36 .35 .37 .39 .36 .31 .36 .325 .37<	2100 0 8800 8933 535 535 1090 1740 8300 1340 1540 1540 1540 1540 2300 6300 6300 6300 6300 6300 7900 6300 6300 0 700 0 0 0 0 0 0 0 0 0 0 0 0		0.00003 0.000058 0.00016 0.000058 0 0.000016 0.000024 0 0.000018 0 0.000028 0 0 0.0000088 0 0.0000088 0 0.0000088 0 0.00000189 0.0000112 0 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000015 0.000015 0.000058 0.000018 0.000018 0.000018 0.000018 0.000018 0.000012 0.000018 0.000012 0.000012 0.000018 0.000012 0.000012 0.000012 0.000018 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.0000000000		220004488000044880000000000000000000000	5 1 1 1 4.7 56 8 20 5 26 105 1 23 032 29 5 4.7 0 0 0 1 1	^	920 0 0 385 3482 0 0 1046 0 120 0 35 0.185 0 0 120 0 35 0 1250 0 234 55 50 0 234 490 0 474 0 0 0 0 0 0 0 0 0 0 0 0 0 1133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wählen Sie "Materialdatenbank" um die Materialdaten für Stahl zu übernehmen:

Wählen Sie "Instationär" um die Gesamtzeit, Zeitschritt und die Starttemperatur einzugeben.

🔡 Temperatur-Analyse	- 🗆 X		
Knoten-Temperaturen (°C)) Stationär 🖲 Instationär () Statik	💀 Instationaere Temperatur	– 🗆 X
Punktquelle, Lasttyp 2 (W)	Materialdaten Material-Datenbank	Gesamtzeit: 800.0	(sek)
Flächenquelle, Lasttyp 7 (W/m²)	Konvektions-Datenbank	Starttemperatur: 620.0	(°C)
Konvektion, Lasttyp 8 (W/m²K)	Internet-Links: Wärmeleitfähigkeit für unter. Materialien		
Strahlung, Lasttyp 9	Spez. Wärmekapazität für unter. Materialien	CANCEL	ОК
Cancel	ОК		

Postprocessing

Ergebnisse einladen							
	Zeitschritt: 1						
Instationare Temperatur							
O Warmestromdichte	 Auflagerkräfte auswerten 						
🔘 Elementspannungen ungemittelt	🔘 Knotenkräfte auswerten						
	Legende und Farben einstellen Knotenwerte picken, suchen, sichem						
1 3 4							
Ergebnis-Komponente <mark>w</mark> ählen Instationäre Temperaturvert	teilung ~						
Instationāre Temperaturvert	teilung ~						

Ausgangszustand mit einer Anfangstemperatur von 620°C

Temperaturverteilung nach 44.32 sec beträgt 500.3 °C

Temperaturverteilung mit QUAX8 nach 664.95 sec beträgt 56°C

Die Abkühlzeit bei 50°C beträgt somit

50°C * 665 sec / 56°C = 593 sec = 9.8 min

